Exercice 1

Partie A

- 1. On peut associer, à chaque application $f \in F^E$, la liste ordonnée de 4 éléments (f(1), f(2), f(3), f(4)), ces quatre éléments étant pris dans F avec répétitions autorisées. Grâce un arbre de choix à 4 niveaux, on «voit» que le nombre d'applications de E dans F est égal à : $5 \times 5 \times 5 \times 5 = 5^4 = 625$
- 2. (a) Posons $\varphi(1) = b$; $\varphi(2) = a$; $\varphi(3) = e$; $\varphi(4) = c$ Alors φ est un exemple d'application injective de E dans F.
 - (b) Pour construire une injection f de $E=\{1\,,\,2\,,\,3\,,\,4\}$ dans $F=\{a\,,\,b\,,\,c\,,\,d\,,\,e\}$, on commence par choisir f(1) (5 possibilités), puis on choisit f(2) (4 possibilités), ensuite f(3) (3 possibilités), et enfin f(4) (2 possibilités). On peut coder chaque injection de E dans F par une unique liste ordonnée et sans répétition de 4 éléments choisis dans l'ensemble F.

Le nombre d'injections est donc $A_5^4 = 5 \times 4 \times 3 \times 2 = 120$

Partie B

1. Soit E et F deux ensembles. Soit f une application de E vers F.

Pour toute partie A de E, on appelle **image directe** de A par f le sous-ensemble de F noté f(A), défini par :

$$f(A) = \{ f(x) \in F \mid x \in A \}$$

Autrement dit $y \in f(A) \iff [\exists x \in A / y = f(x)]$

2. Déterminons $f(\mathbb{U})$.

$$\begin{array}{lll} z' \in f(\mathbb{U}) & \Longleftrightarrow & \exists z \in \mathbb{U} \ / \ z' = f(z) \\ & \Longleftrightarrow & \exists \theta \in \mathbb{R} \ / \ z' = f(\mathrm{e}^{i\,\theta}) \\ & \Longleftrightarrow & \exists \theta \in \mathbb{R} \ / \ z' = \mathrm{e}^{i\,\theta} + \mathrm{e}^{-i\,\theta} \\ & \Longleftrightarrow & \exists \theta \in \mathbb{R} \ / \ z' = 2 \cos \theta \quad \text{d'après une formule d'Euler} \\ & \Longleftrightarrow & z' \in \mathbb{R} \text{ et } -2 \leqslant z' \leqslant 2 \end{array}$$

Ainsi $f(\mathbb{U})$ est l'intervalle fermé borné $[-2\,;\,2]$

$\underline{\mathbf{Exercice}\ \mathbf{1}} \quad \mathrm{(bis)}$

Partie A

- 2. (a) Posons $\varphi(1)=b$; $\varphi(2)=a$; $\varphi(3)=d$; $\varphi(4)=c$; $\varphi(5)=b$ Alors φ est un exemple d'application surjective de E sur F.
 - (b) Pour construire une surjection f de $E = \{1, 2, 3, 4, 5\}$ sur $F = \{a, b, c, d\}$, on commence par choisir les deux éléments de E qui auront la même image, soit $\binom{5}{2}$ possibilités, puis l'image commune de ces deux éléments (4 possibilités). Ensuite on forme une bijection entre les 3 éléments restant au départ et à l'arrivée (3! possibilités).

Le nombre de surjections est donc $\binom{5}{2} \times 4 \times 3! = \frac{5 \times 4}{2} \times 4 \times 6 = 240$.

Partie B

Soit E et F deux ensembles. Soit f une application de E vers F.
 Pour toute partie B de F, on appelle image réciproque de B par f le sousensemble de E noté f⁻¹(B), défini par :

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}$$

Autrement dit $x \in f^{-1}(B) \iff f(x) \in B$

2. Déterminons $f^{-1}(\mathbb{U})$.

$$\begin{array}{lll} z\in f^{-1}(\mathbb{U}) &\iff & f(z)\in\mathbb{U}\\ &\iff & |f(z)|=1\\ &\iff & \frac{|z+1|}{|z|}=1 & \text{d'après une propriété du module d'un quotient}\\ &\iff & |z+1|=|z|\\ &\iff & |z+1|^2=|z|^2\\ &\iff & (z+1)\left(\overline{z+1}\right)=z\,\overline{z}\\ &\iff & z+\overline{z}=-1 & \text{car} & \overline{z+1}=\overline{z}+1\\ &\iff & \Re e(z)=-\frac{1}{2} \end{array}$$

Ainsi $f^{-1}(\mathbb{U})$ est l'ensemble des complexes dont la partie réelle est égale à -1/2. Dans le plan complexe, $f^{-1}(\mathbb{U})$ est représenté par la droite verticale d'équation x = -1/2.

Corrigé médian - MT11 - A2011

Exercice 2

1. (a) $Z^4 = 1 \iff (Z^2 - 1)(Z^2 + 1) = 0 \iff (Z - 1)(Z + 1)(Z - i)(Z + i) = 0$ admet comme ensemble solutions

$$S = \left\{ e^{\frac{i 2k\pi}{4}}, k \in [0; 3] \right\} = \{1, i, -i, -1\}$$

(b) On pose $Z = \frac{2z+2}{z-1}$ avec $z \neq 1$ et on utilise les solutions précédentes :

$$Z = 1 \Leftrightarrow 2z + 1 = z - 1 \Leftrightarrow z = -2$$

$$Z = -1 \Leftrightarrow 2z + 1 = -z + 1 \Leftrightarrow z = 0$$

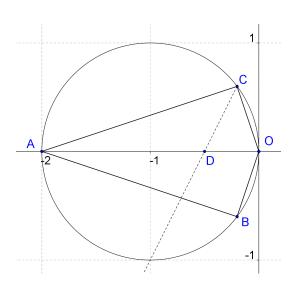
$$Z = i \Leftrightarrow 2z + 1 = iz - i \Leftrightarrow z = \frac{-1 - i}{2 - i} \Leftrightarrow z = -\frac{1}{5} - \frac{3}{5}i$$

$$Z=-i \Leftrightarrow 2z+1=-iz+i \Leftrightarrow z=\frac{-1+i}{2+i} \Leftrightarrow z=-\frac{1}{5}+\frac{3}{5}i$$

L'équation admet comme ensemble de solutions :

$$\mathscr{S} = \left\{ 0 \; , \; -2 \; , \; -\frac{1}{5} - \frac{3}{5}i \; , \; -\frac{1}{5} + \frac{3}{5}i \right\}$$

2. a)



b) Calculons une mesure de l'angle orienté de vecteurs $\left(\overrightarrow{CA},\overrightarrow{CO}\right)$ en utilisant

les affixes:

$$\left(\widehat{\overrightarrow{CA}}, \widehat{\overrightarrow{CO}}\right) = \arg\left(\frac{0-c}{a-c}\right) = \arg\left(\frac{\frac{1}{5} - i\frac{3}{5}}{-2 - \left(-\frac{1}{5} + i\frac{3}{5}\right)}\right)$$

$$= \arg\left(\frac{\frac{1}{5} - i\frac{3}{5}}{-\frac{9}{5} - \frac{3}{5}i}\right) = \arg\left(\frac{1}{3}i\right)$$

$$= \frac{\pi}{2} \mod 2\pi$$

donc les vecteurs \overrightarrow{CA} et \overrightarrow{CO} sont orthogonaux. On en déduit que le point C appartient au cercle de diamètre [AO].

D'autre part les points B et C sont symétriques par rapport à l'axes des abscisses car $\overline{c}=b$.

D'où
$$(\overrightarrow{BA},\overrightarrow{BO}) = -(\overrightarrow{CA},\overrightarrow{CO}) = -\frac{\pi}{2}$$

donc le point B appartient aussi au cercle de diamètre [AO], ce qui prouve bien que les quatre points A, O, B et C sont situés sur le cercle de diamètre [AO].

3. Nous avons :
$$z' = \frac{a-c}{d-c} = \frac{-2 - \left(-\frac{1}{5} + \frac{3}{5}i\right)}{-\frac{1}{2} - \left(-\frac{1}{5} + \frac{3}{5}i\right)} = \frac{-\frac{9}{5} - \frac{3}{5}i}{-\frac{3}{10} - \frac{3}{5}i} = 2 - 2i$$

Or
$$|2 - 2i| = \sqrt{4 + 4} = 2\sqrt{2}$$
 et

$$2 - 2i = 2\sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

On en déduit donc que $z' = 2 - 2i = 2\sqrt{2} e^{-i\frac{\pi}{4}}$

En utilisant les modules :

$$\frac{CA}{CD} = \frac{|a-c|}{|d-c|} = \left| \frac{a-c}{d-c} \right| = |z'| = 2\sqrt{2}$$

On a aussi:

$$\left(\widehat{\overrightarrow{CD},\overrightarrow{CA}}\right) = \arg\left(\frac{a-c}{d-c}\right) = -\frac{\pi}{4}$$

Comme

$$\left(\widehat{\overrightarrow{CO}}, \widehat{\overrightarrow{CA}}\right) = -\frac{\pi}{2}$$

on peut en déduire que la droite (CD) est la bissectrice de l'angle $(\overrightarrow{CO}, \overrightarrow{CA})$

Corrigé médian - MT11 - A2011

Exercice 3

Partie A

1. (a) On considère l'inégalité $\mathcal{P}(n)$: « $u_n \leq u_{n+1}$ ».

Cette propriété est vraie au rang 0 par hypothèse.

Soit k un entier naturel fixé. Supposons que $\mathcal{P}(k)$ soit vraie : $u_k \leq u_{k+1}$. Alors, $f(u_k) \leq f(u_{k+1})$ car f est croissante sur I et u_k, u_{k+1} sont éléments de I (par hypothèse, $u_n \in I$ pour tout $n \in \mathbb{N}$).

On en déduit que $u_{k+1} \leq u_{k+2}$, c'est-à -dire $\mathcal{P}(k+1)$ est vraie.

Ainsi la propriété $\mathcal{P}(n)$ est héréditaire et vraie au rang 0, elle est donc vraie pour tout $n \in \mathbb{N}$.

(b) On applique le théorème sur les suites croissantes majorées, resp. décroissantes minorées.

Si $u_0 \leq u_1$, alors, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante (d'après la question précédente) et majorée par b. Elle est donc convergente.

Sinon $(u_0 > u_1)$, la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante (d'après la question précédente) et minorée par a. Elle est donc convergente.

2. La propriété à démontrer est l'appartenance : Q(n) : « $u_n \in I$ ».

 $\mathcal{Q}(0)$ est vraie par hypothèse et $u_k \in I \Rightarrow u_{k+1} \in I$ car $u_{k+1} = f(u_k)$ et $f(I) \subset I$. $\mathcal{Q}(n)$ est donc héréditaire et, par suite, vraie pour tout $n \geqslant 0$.

3. Soit x et y deux réels appartenant à I et tels que $x \leq y$. On a $f(x) \geqslant f(y)$ car f est décroissante sur I. De plus, f(x) et f(y) appartiennent à I car $f(I) \subset I$. Donc, $f(f(x)) \leq f(f(y))$ en utilisant à nouveau la décroissance de f sur I. D'où $g(x) \leq g(y)$.

Ainsi, on a montré que, pour tous réels $x, y \in I$, $x \leq y \Longrightarrow g(x) \leq g(y)$ ce qui prouve que la fonction g est croissante sur I.

Partie B

1.
$$\forall x \in \mathbb{R}, \ f(x) = -3x^2 + 3x = -3(x^2 - x) = -3\left[\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right]$$

x	$-\infty$		1/2		$+\infty$
			3		
ſ		Я	4	_	
J		/`		×	
	$-\infty$				$-\infty$

$$f\left(\frac{1}{2}\right) = 3 \times \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = \frac{3}{4}$$

$$f([0,1]) = \left[0, \frac{3}{4}\right]$$
 et $f\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right) = \left[\frac{9}{16}, \frac{3}{4}\right]$.

- 2. $f(x) = x \iff x[3(1-x)-1] = 0 \iff x = 0 \text{ ou } x = \frac{2}{3}$.
- 3. On pose $I=\left[\frac{1}{2}\,,\,\frac{3}{4}\right]$. On a $f(I)=\left[\frac{9}{16}\,,\,\frac{3}{4}\right]$ donc $f(I)\subset I$.

D'autre part, $u_0 = \frac{1}{2}$ donc $u_0 \in I$. Toutes les hypothèses de la question A-2 sont vérifiées.

On en déduit que $u_n \in I$ pour tout $n \in \mathbb{N}$.

- 4. D'après B-1, la fonction f est décroissante sur I et, d'après B-3, $f(I) \subset I$. Donc, les hypothèses de la question A-3 sont vérifiées. On en déduit que g est croissante sur I.
- 5. Pour tout $n \in \mathbb{N}$, on a $\alpha_{n+1} = u_{2(n+1)} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n}) = g(u_{2n}) = g(\alpha_n)$ et $\beta_{n+1} = u_{2(n+1)+1} = u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1}) = g(u_{2n+1}) = g(\beta_n)$.

Pour tout $n \in \mathbb{N}$, on a $\alpha_n \in I$ (d'après B-3) et $\alpha_{n+1} = g(\alpha_n)$ avec g croissante sur I (d'après B-4). De plus, I = [a,b] avec $a = \frac{1}{2}$ et $b = \frac{3}{4}$. Donc la suite (α_n) vérifie toutes les hypothèses de la question A-1-b. On en déduit que la suite (α_n) est convergente.

De même, on montre que (β_n) est convergente.

6. Soit x_0 une solution de l'équation f(x) = x. Alors, $g(x_0) = f[f(x_0)] = f[x_0] = x_0$. Notons ℓ la limite de la suite (α_n) . Alors il est clair que $\lim_{n \to +\infty} \alpha_{n+1} = \ell$.

 $\lim_{n\to +\infty}\alpha_n=\ell \text{ et } g \text{ est continue sur } \mathbb{R} \text{ (en tant que polynôme) donc } g \text{ est continue au point } \ell \text{ . D'où } \lim_{x\to \ell}g(x)=g(\ell) \text{ . On en déduit par composition que } g(\ell)$

 $\lim_{n \to +\infty} g(\alpha_n) = g(\ell). \quad \text{Or}, \ \forall n \in \mathbb{N}, \ \alpha_{n+1} = g(\alpha_n).$

Donc $\lim_{n\to +\infty} \alpha_{n+1} = g(\ell)$. Par unicité de la limite d'une suite, on en déduit que ℓ est une solution de l'équation g(x)=x. Or, d'après l'énoncé et la question B-2, $g(x)=x \Leftrightarrow f(x)=x \Leftrightarrow x=0$ ou x=2/3.

Donc $\ell = 0$ ou $\ell = \frac{2}{3}$.

Puisque $\forall n \in \mathbb{N}, \ \frac{1}{2} \leqslant \alpha_n \leqslant \frac{3}{4}$, on obtient par passage à la limite dans cet encadrement : $\frac{1}{2} \leqslant \ell \leqslant \frac{3}{4}$. Ainsi $\ell = \frac{2}{3}$.

De même la limite de la suite (β_n) est solution de l'équation g(x) = x.

Comme tous les termes de (β_n) appartiennent à l'intervalle $\left[\frac{1}{2}, \frac{3}{4}\right]$ (question B-3), cette suite ne tend pas vers 0. On en conclut que les suites (α_n) et (β_n) convergent vers 2/3.